cAMP-independent phosphorylation activation of CFTR by G proteins in native human sweat duct.
نویسندگان
چکیده
It is generally believed that cAMP-dependent phosphorylation is the principle mechanism for activating cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channels. However, we showed that activating G proteins in the sweat duct stimulated CFTR Cl(-) conductance (G(Cl)) in the presence of ATP alone without cAMP. The objective of this study was to test whether the G protein stimulation of CFTR G(Cl) is independent of protein kinase A. We activated G proteins and monitored CFTR G(Cl) in basolaterally permeabilized sweat duct. Activating G proteins with guanosine 5'-O-(3-thiotriphosphate) (10-100 microM) stimulated CFTR G(Cl) in the presence of 5 mM ATP alone without cAMP. G protein activation of CFTR G(Cl) required Mg(2+) and ATP hydrolysis (5'-adenylylimidodiphosphate could not substitute for ATP). G protein activation of CFTR G(Cl) was 1) sensitive to inhibition by the kinase inhibitor staurosporine (1 microM), indicating that the activation process requires phosphorylation; 2) insensitive to the adenylate cyclase (AC) inhibitors 2',5'-dideoxyadenosine (1 mM) and SQ-22536 (100 microM); and 3) independent of Ca(2+), suggesting that Ca(2+)-dependent protein kinase C and Ca(2+)/calmodulin-dependent kinase(s) are not involved in the activation process. Activating AC with 10(-6) M forskolin plus 10(-6) M IBMX (in the presence of 5 mM ATP) did not activate CFTR, indicating that cAMP cannot accumulate sufficiently to activate CFTR in permeabilized cells. We concluded that heterotrimeric G proteins activate CFTR G(Cl) endogenously via a cAMP-independent pathway in this native absorptive epithelium.
منابع مشابه
Bumetanide blocks CFTR G Cl in the native sweat duct.
Bumetanide is well known for its ability to inhibit the nonconductive Na+-K+-2Cl-cotransporter. We were surprised in preliminary studies to find that bumetanide in the contraluminal bath also inhibited NaCl absorption in the human sweat duct, which is apparently poor in cotransporter activity. Inhibition was accompanied by a marked decrease in the transepithelial electrical conductance. Because...
متن کاملCytosolic pH regulates G Cl through control of phosphorylation states of CFTR.
Our objective in this study was to determine the effect of changes in luminal and cytoplasmic pH on cystic fibrosis transmembrane regulator (CFTR) Cl- conductance ( G Cl). We monitored CFTR G Cl in the apical membranes of sweat ducts as reflected by Cl- diffusion potentials ( V Cl) and transepithelial conductance ( G Cl). We found that luminal pH (5.0-8.5) had little effect on the cAMP/ATP-acti...
متن کاملSelective activation of cystic fibrosis transmembrane conductance regulator Cl- and HCO3- conductances.
While cystic fibrosis transmembrane conductance regulator (CFTR) is well known to function as a Cl(-) channel, some mutations in the channel protein causing cystic fibrosis (CF) disrupt another vital physiological function, HCO(3)(-) transport. Pathological implications of derailed HCO(3)(-) transport are clearly demonstrated by the pancreatic destruction that accompany certain mutations in CF....
متن کاملExocytosis is not involved in activation of Cl- secretion via CFTR in Calu-3 airway epithelial cells.
Cystic fibrosis is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) Cl-channel, which mediates transepithelial Cl- transport in a variety of epithelia, including airway, intestine, pancreas, and sweat duct. In some but not all epithelial cells, cAMP stimulates Cl- secretion in part by increasing the number of CFTR Cl- channels in the apical plasma membrane. ...
متن کاملبررسی اثر افزایش cAMP بر فسفوریلاسیون پروتئین BAD در ردهی سلولی لوسمی لنفوبلاستیک حاد پیش سازB- (NALM-6) تیمارشده با دوکسوروبیسین
Kashiri M1, Safa M2, Kazemi A3 1Dept. of Hematology, Allied Medical School, Tehran University of Medical Sciences, Tehran, Iran 2Cellular and Molecular Research Center, Dept. of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran 3Dept. of Hematology & Blood Banking, School of Allied Medicine, Iran University of Medical Sciences, Tehran, I...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Cell physiology
دوره 280 3 شماره
صفحات -
تاریخ انتشار 2001